
SRLabs Template v12

Corporate Design

2016

Hacking IOT devices using JTAG

HiTB 2024 – Hardware Village

Das Logo Horizontal

— Pos / Neg

3

Agenda

2

1. What is JTAG?

2. Discovering a JTAG interface

3. Identifying JTAG pinout

4. Dumping firmware via JTAG

5. Challenges & Future works

Das Logo Horizontal

— Pos / Neg

3

What is JTAG?

3

§JTAG is the name used for the IEEE
1149.1 standard entitled Standard Test
Access Port and Boundary-Scan
Architecture for test access ports (TAP)
used for testing printed circuit boards
(PCB) using boundary scan

§Processors often use JTAG to provide
access to their debug/emulation
functions and all FPGAs and CPLDs
use JTAG to provide access to their
programming functions

Das Logo Horizontal

— Pos / Neg

3

Agenda

4

1. What is JTAG?

2. Discovering a JTAG interface

3. Identifying JTAG pinout

4. Dumping firmware via JTAG

5. Challenges & Future works

Das Logo Horizontal

— Pos / Neg

3

JTAG does not have standardized connection pinout. You might want to use a JTAGulator to
bruteforce & verify the pinout

5

ARM JTAG header

ARM JTAG header MIPS EJTAG JTAG header

Toshiba MIPS JTAG header

… etc

Common JTAG interfaces[1]

[1] http://jtagtest.com/pinouts/

Real life JTAG interface

§ No Pin labels
§ No Chip information

Das Logo Horizontal

— Pos / Neg

3

Agenda

6

1. What is JTAG?

2. Identifying a JTAG interface

3. Identifying JTAG pinout

4. Dumping firmware via JTAG

5. Challenges & Future works

Das Logo Horizontal

— Pos / Neg

3

JTAGulator supports IDCODE scan & BYPASS scan to bruteforce the JTAG pinout

7

§ JTAGulator is an open-source hardware tool that assists in identifying OCD (On-
Chip Debug) interfaces from test points, vias, component pads, or connectors on
a target device.

What is a JTAGulator?

Expected results
§ Identified TDO, TCK, TMS pins

Under the hood
§ JTAGulator continuously send IDCODE command over the assumed pinout, until

device identifier information is returned

What is a IDCODE scan?

Expected results
§ Identified TDI, TDO, TCK, TMS pins

Under the hood
§ JTAGulator continuously send BYPASS command to the assumed pinout, until

the same data input into TDI returned from TDO

What is a BYPASS scan?

Das Logo Horizontal

— Pos / Neg

3

Identifying pinout with JTAGulator (Part 1) – Identify ground pin(s) using multimeter

8

Step 1

Power off the target device for:
- safe test
- accurate measurement
- avoiding damage to circuit board & meter

Step 2 Touch the black probe on a known ground (USB port case, power button case)

Step 3 Touch the red probe with each JTAG pin
- the ones which form a circuit in the continuity test is the GND pin (give beep sound)

Pre-
requisites

§ Multi-meter
§ Physical access to the target device

Das Logo Horizontal

— Pos / Neg

3

Identifying pinout with JTAGulator (Part 2) – Connect the pins with JTAGulator

9

Step 1 Connect one GND from the device to JTAGulator’s
GND

Step 2

Connect the rest of the device’s pins to the
channel pins of JTAGulator

**Make sure you can trace back the channel pins
to the pins on the device

Pre-
requisites

§ JTAGulator
§ Jump wires

Das Logo Horizontal

— Pos / Neg

3

Identifying pinout with JTAGulator (Part 3) – Run IDCODE scan on JTAGulator

10

Step 1
Connect the JTAGulator to laptop over USB cable
- open console access to JTAGulator via command:
screen /dev/USBtty0 115200

Step 2

Start IDCODE scan first with below commands
- enter JTAG mode with “J”
- set target device’s voltage level with “V”
- initiate IDCODE with “I”
- configure bruteforce channels
(channel 0-12 connected in previous part)

Pre-
requisites

§ JTAGulator
§ Laptops (Ubuntu 20.04 or above is preferred)

Step 3 Wait for the results of TDO, TCK, TMS

Das Logo Horizontal

— Pos / Neg

3

Identifying pinout with JTAGulator (Part 4) – Run BYPASS scan on JTAGulator

11

Step 1

Start BYPASS scan with below commands
- enter JTAG mode with “J”
- set target device’s voltage level with “V”
- initiate BYPASS scan with “B”
- configure bruteforce channels
(channel 0-12 connected in previous part)
- configure known pins to speed up the scan

Pre-
requisites

§ JTAGulator
§ Laptops (Ubuntu 20.04 or above is preferred)

Step 2 Wait for the results of TDI, TDO, TMS, TCK

Das Logo Horizontal

— Pos / Neg

3

Agenda

12

1. What is JTAG?

2. Identifying a JTAG interface

3. Identifying JTAG pinout

4. Dumping firmware via JTAG

5. Challenges & Future works

Das Logo Horizontal

— Pos / Neg

3

Connecting to JTAG

13

Bus Pirate
§ Price: 30 – 60 USD

§ Pros:
- Support wide range of
protocols (JTAG, SPI, I2C,
UART, etc)

§ Cons:
- Relatively slow
compared to dedicated
JTAG debuggers

ST-Link v2
§ Price: 13 – 46 USD

§ Pros:
- Cost Effective for JTAG
debugging

§ Cons:
- Only compatible with
STM32 devices
(most cases)

J-LINK v9
§ Price: ~450 USD

§ Pros:
- High performance with
wide compatibility

§ Cons:
- Expensive for high-end
version, e.g., commercial

JTAGulator
§ Price: 90 - 200 USD

§ Pros:
- Specializes in identifying
JTAG/ UART pinouts

§ Cons:
- Limited functions in
JTAG debugging

Das Logo Horizontal

— Pos / Neg

3

Extracting firmware over JTAG (Part 1) – Upgrade the bus pirate version for JTAG & OpenOCD

14

Pre-
requisites

§ Bus Pirate v3.x
§ Bus Pirate firmware version 6.1 r1676/ 6.0 r1625
§ Laptops (Ubuntu 20.04 or above is preferred)

Step 1
Download the firmware repository
git clone https://github.com/DangerousPrototypes/Bus_Pirate.git
cd Bus_Pirate-master/BPv3-bootloader/pirate-loader

Step 3
Flash the new firmware v6.1
./pirate-loader_lnx --dev=/dev/ttyUBS0 --hex=../../package/BPv3-
firmware/old-versions/BPv3-frimware-v6.1.hex

Step 2

Enter the bus pirate
screen /dev/ttyUSB0 115200
Enter bootloader mode in the bus pirate
$
Kill the screen session to prevent the connection occupied
Press the keys: Ctrl + A, k, y

Step 4 ## Verify the firmware version in the bus pirate terminal
i

Das Logo Horizontal

— Pos / Neg

3

Extracting firmware over JTAG (Part 2) – Connect the bus pirate to the JTAG interface

15

Step 1

Connect the Pins as identified:
Bus Pirate <-> Target JTAG interface

TDI (MOSI) <-> TDI
TCK (CLK) <-> TCK
TMS (CS) <-> TMS
TDO (MISO) <-> TDO
GND <-> GND

Bus pirate pin translation table

Das Logo Horizontal

— Pos / Neg

3

Extracting firmware over JTAG (Part 3) – Connect to the JTAG using openOCD

16

Step 1

Install openocd, if not
sudo apt get install libtool autoconf texinfo libusb-dev libftdi-dev screen -y
git clone git://git.code.sf.net/p/openocd/code
./bootstrap
./configure --enable-maintainer-mode --disable-werror --enable-buspirate

Step 2
Open JTAG connection via Openocd
openocd config in next slide as appendix
openocd -f MyBuspirate -f ath79.cfg

Das Logo Horizontal

— Pos / Neg

3

Appendix – Extracting firmware over JTAG (Part 3) – openOCD config

17

ath79.cfg [1]
Atheros ATH79 MIPS SoC.
tested on AP83 and AP99 reference board
#
source: https://forum.openwrt.org/viewtopic.php?pid=297299#p297299

if { [info exists CHIPNAME] } {
 set _CHIPNAME $CHIPNAME
} else {
 set _CHIPNAME ath79
}

if { [info exists ENDIAN] } {
 set _ENDIAN $ENDIAN
} else {
 set _ENDIAN big
}

if { [info exists CPUTAPID] } {
 set _CPUTAPID $CPUTAPID
} else {
 set _CPUTAPID 0x00000001
}

jtag_ntrst_assert_width 200
jtag_ntrst_delay 1

reset_config trst_only

jtag newtap $_CHIPNAME cpu -irlen 5 -ircapture 0x1 -irmask 0x1f -expected-id $_CPUTAPID

set _TARGETNAME $_CHIPNAME.cpu
target create $_TARGETNAME mips_m4k -endian $_ENDIAN -chain-position $_TARGETNAME

$_TARGETNAME configure -event reset-init {
 # disable flash remap
 mww 0xbf000004 0x43
}

serial SPI capable flash
flash bank <driver> <base> <size> <chip_width> <bus_width>
set _FLASHNAME $_CHIPNAME.flash
flash bank $_FLASHNAME ath79 0xbf000000 0x01000000 0 0 $_TARGETNAME

[1] https://openwrt.org/docs/guide-user/hardware/debrick.ath79.using.jtag#ath79cfg

MyBuspirate.cfg
source [find /usr/local/share/openocd/scripts/interface/buspirate.cfg]
buspirate port /dev/ttyUSB0
Transport select jtag

Das Logo Horizontal

— Pos / Neg

3

Extracting firmware over JTAG (Part 4) – Halt the device before firmware extraction

18

Step 1 ## Telnet to openocd server
telnet localhost 4444
check the target chip’s state
targets

Step 2 ## Spam the halt command to halt the CPU
halt
Pause until you see two halt implemented and the
state is steadily halted from “targets” output

- Sometimes you can only halt the CPU in the beginning of
the system boot up

- Half-successful halt will trigger system reboot. Not a
permanent halt

Das Logo Horizontal

— Pos / Neg

3

Extracting firmware over JTAG (Part 5) – Dump the firmware

19

Step 1 ## Identify the flash memory location & size [1]
flash banks

Step 2 ## Identify the flash chip device name (optional)
flash probe 0

Step 3 ## Extract the firmware based on the offset identified in step 1
dump_image <output filename> 0xbf000000 0x0100000

Step 4
Verify the image is being dumped

Footnotes [1]

§ Flash banks are pre-defined
in the target chip’s config
file (ath79.cfg)

§ Without the config, it will
not work L

Das Logo Horizontal

— Pos / Neg

3

Agenda

20

1. What is JTAG?

2. Identifying a JTAG interface

3. Identifying JTAG pinout

4. Dumping firmware via JTAG

5. Challenges & Future works

Das Logo Horizontal

— Pos / Neg

3

The journey of JTAG hacking doesn’t end here yet… Some challenges need more effort to work
around

21

Challenge Impact Why this challenge happens?

Obtain chip
specification
(data sheet)

§ Unable to craft openocd config
-> Cannot connect the JTAG interface via
OpenOCD

§ Chip’s details are in the datasheet, e.g. bus
width, chip width, memory mapping

§ Manufacturer does not publish all their
chip’s specification

Potential workaround

§ An automotive brute-force approach to identify chip specification
(See next slide)

Das Logo Horizontal

— Pos / Neg

3

The essential components of OpenOCD config files are bruteforceable

22

Essential config
components

§ Bytes order
- Big-endian vs Little-endian

§ CPUTAPID
- Retrievable from IDCODE scan

§ Instruction Register Length
- Common configuration based on chip architecture, e.g.
- 4-bit for simple devices, 5-bit for Cortex-M, 7-bit for ARM cores, etc

§ Flash memory offset
- Common values based on flash driver – readily available on OpenOCD page, e.g.
- ath79: 0xbf000000/ 0x10000000/ 0x20000000; mrvlqspi: 0x46010000; etc

§ Flash memory size
- identifiable via physical inspection on the flash chip (refer to our SPI flash hacking!!)

Hypothetical automation steps

Populate the config
files for bruteforce

Spawning openocd
with new config files

Validate config by
some means
(to be researched)

Extract firmware with
the few potential
legitimate config

Extract and search file
system from the
firmwares

1 2 3 4 5

To answer after
implementation & research

§ Any essential components forgotten?
§ Will the bruteforce time be acceptable?

