Hacking IOT devices using JTAG

HiTB 2024 — Hardware Village

Security
I) Research

Labs

Agenda

} 1. What is JTAG?

2. Discovering a JTAG interface
3. Identifying JTAG pinout
4. Dumping firmware via JTAG

5. Challenges & Future works

[> Security Research Labs

What is JTAG?

= JTAG is the name used for the IEEE

1149.1 standard entitled Standard Test i, 2“’“ "
Access Port and Boundary-Scan B T T
Architecture for test access ports (TAP) oL l /4
used for testing printed circuit boards
(PCB) using boundary scan - /:l— "

Cormectons ’ L

» Processors often use JTAG to provide ‘ |
access to their debug/emulation R T f}' Deta Out (TDO)
functions and all FPGAs and CPLDs Pfg'am'f"”i“ef"j’e’
use JTAG to provide access to their ‘ — |
programming functions e ;j: ol
TRST'(%;;;I)

[> Security Research Labs

Agenda

[> Security Research Labs

1. What is JTAG?

} 2. Discovering a JTAG interface

3. Identifying JTAG pinout
4. Dumping firmware via JTAG

5. Challenges & Future works

JTAG does not have standardized connection pinout. You might want to use a JTAGulator to
bruteforce & verify the pinout

Common JTAG interfaces[1]

Real life JTAG interface

= No Pin labels

= No Chip information

D Security Research Labs [1] http://jtagtest.com/pinouts/ 5

Agenda

[> Security Research Labs

1. What is JTAG?

2. ldentifying a JTAG interface

) 3. Identifying JTAG pinout

4. Dumping firmware via JTAG

5. Challenges & Future works

JTAGulator supports IDCODE scan & BYPASS scan to bruteforce the JTAG pinout

= JTAGulator is an open-source hardware tool that assists in identifying OCD (On-
Chip Debug) interfaces from test points, vias, component pads, or connectors on
a target device.

Expected results
= |dentified TDO, TCK, TMS pins

Under the hood
= JTAGulator continuously send IDCODE command over the assumed pinout, until
device identifier information is returned

Expected results
= |dentified TDI, TDO, TCK, TMS pins

Under the hood
= JTAGulator continuously send BYPASS command to the assumed pinout, until
the same data input into TDI returned from TDO 7

|dentifying pinout with JTAGulator (Part 1) — Identify ground pin(s) using multimeter

Pre- = Multi-meter
RO = Physical access to the target device

Power off the target device for:
- safe test

Step 1

- accurate measurement

- avoiding damage to circuit board & meter
Step 2 Touch the black probe on a known ground (USB port case, power button case)
Step 3 Touch the red probe with each JTAG pin

- the ones which form a circuit in the continuity test is the GND pin (give beep sound)

[> Security Research Labs 8

Identifying pinout with JTAGulator (Part 2) — Connect the pins with JTAGulator

Pre- = JTAGulator
RO = Jump wires

Connect one GND from the device to JTAGulator’s
GND

Connect the rest of the device’s pins to the
channel pins of JTAGulator

**Make sure you can trace back the channel pins
to the pins on the device

[> Security Research Labs

Identifying pinout with JTAGulator (Part 3) — Run IDCODE scan on JTAGulator

Pre- = JTAGulator
COOIHIGE = Laptops (Ubuntu 20.04 or above is preferred)

Connect the JTAGulator to laptop over USB cable

Step 1 - open console access to JTAGulator via command:

JTAG> I

screen ldeVIUSBttyn 115200 Enter starting channel [0]:
Enter ending channel [7]:
Possible permutations: 336
Bring channels LOW before each permutation? [Y/n]:

3 g Enter length of time for channels to remain LOW (in ms, 1 - 1000) [160]:
Start IDCODE scan fIrSt Wlth beIOW Commands Enter length of time after channels return HIGH before proceeding (in ms, 1 - 1000) [100]:
. “» P b to begi th k besid Ent t bort)...
- enter JTAG mode with *J e e oy o' ape) Sosties nar o shart

- set target device’s voltage level with “V"

Step 2 _initiate IDCODE with ‘I’
- configure bruteforce channels
(channel 0-12 connected in previous part)
IDCODE scan complete.
Jtac> i
Step 3 Wait for the results of TDO, TCK, TMS

> Security Research Labs 10

|dentifying pinout with JTAGulator (Part 4) — Run BYPASS scan on JTAGulator

Pre- = JTAGulator
COOIHIGE = Laptops (Ubuntu 20.04 or above is preferred)

Start BYPASS scan with below commands JTac Eta_rmg e
- enter JTAG mode with “J’ re any pine already knownz [¥/n:
. . ATVID Enter X for any unknown pin.
- set target device’s voltage level with *V L0y s G 19 &
nter pin :
Step 1 - initiate BYPASS scan with “B Enter 1hs ot Lo1;
- configure bruteforce channels Possible pernutations: 10
0 0 i h 1l bef) u ion? :
(ChannEI 0'12 Connected N preV|OUS pal’t) E;tgg iezggﬁ szEc)?meefZ;ecigﬁnegir:otiz;ggn E;(Jngin ms, 1 - 1000) [100]:
. . Enter length of time after channels return HIGH before proceeding (in ms, 1 - 1000) [1600]:
- Conf|gu re known p|ns to Speed up the sScan Press spacebar to begin (any other key besides Enter to abort)...

JTAGulating! Press any key to abort...

TDI: 5
TDO: 4
TCK: 2
TMS: 3
Number of devices detected: 1

BYPASS scan complete.

Step 2 Wait for the results of TDI, TDO, TMS, TCK yiacs B

[> Security Research Labs 11

Agenda

[> Security Research Labs

1. What is JTAG?
2. ldentifying a JTAG interface

3. Identifying JTAG pinout

} 4. Dumping firmware via JTAG

5. Challenges & Future works

12

Connecting to JTAG

Bus Pirate
" Price: 30 - 60 USD

" Pros:
- Support wide range of
protocols (JTAG, SPI, 12C,
UART, etc)

= Cons:
- Relatively slow
compared to dedicated
JTAG debuggers

[> Security Research Labs

9
o>

\-‘/

ST-Link v2
= Price: 13 - 46 USD

=" Pros:
- Cost Effective for JTAG

debugging

= Cons:
- Only compatible with
STM32 devices
(most cases)

J-LINK v9
= Price: ¥450 USD

= Pros:
- High performance with
wide compatibility

= Cons:
- Expensive for high-end
version, e.g., commercial

JTAGulator
= Price: 90 - 200 USD

= Pros:
- Specializes in identifying
JTAG/ UART pinouts

= Cons:
- Limited functions in
JTAG debugging

13

Extracting firmware over JTAG (Part 1) — Upgrade the bus pirate version for JTAG & OpenOCD

Pre-

requisites

Step 1

Step 2

Step 3

Step 4

= Bus Pirate v3.x
= Bus Pirate firmware version 6.1 r1676/ 6.0 r1625
= Laptops (Ubuntu 20.04 or above is preferred)

Download the firmware repository
git clone https://github.com/DangerousPrototypes/Bus_Pirate.git
cd Bus_Pirate-master/BPv3-bootloader/pirate-loader

Enter the bus pirate

screen /dev/ttyUSB0 115200

Enter bootloader mode in the bus pirate

S

Kill the screen session to prevent the connection occupied
Press the keys: Ctrl + A, k, y

Flash the new firmware v6.1
./pirate-loader_Inx --dev=/dev/ttyUBSO --hex=../../package/BPv3-
firmware/old-versions/BPv3-frimware-v6.1.hex

Verify the firmware version in the bus pirate terminal
i

HiZ>$
Are you sure? y
BOOTLOADER

HiZ>1

Bus Pirate v3.5

Firmware vé6.1 r1é676 Bootloader vé.4
DEVID:0x0447 REVID:0x3046 (24FJ64GABB2 BS8)
http://dangerousprototypes.com

HiZ>8

14

Extracting firmware over JTAG (Part 2) — Connect the bus pirate to the JTAG interface

Bus pirate pin translation table

Connect the Pins as identified:
Bus Pirate <-> Target JTAG interface

TDI (MOSI) <-> TDI
TCK (CLK) <-> TCK
TMS (CS) <-> TMS
TDO (MISO) <->TDO
GND <-> GND

[> Security Research Labs

Mode | 051 | CLK | MISO
HiZ
1-Wire | OWD
UART X RX
I2C | SDA SCL
SPI | MOSI |CLOCK| MISO
JTAG TDI TCK TDO

15

Extracting firmware over JTAG (Part 3) — Connect to the JTAG using openOCD

Install openocd, if not

sudo apt get install libtool autoconf texinfo libusb-dev libftdi-dev screen -y
Step 1 git clone git://git.code.sf.net/p/openocd/code

./bootstrap

.Jconfigure --enable-maintainer-mode --disable-werror --enable-buspirate

Open JTAG connection via Openocd
Step 2 ## openocd config in next slide as appendix
openocd -f MyBuspirate -f ath79.cfg

g $ openocd -f MyBuspirate.cfg -f Jusr/local/share/openocd/scripts/interface/ath79.cfg
Open On-Chip Debugger 0.12.0+dev-00663-916c114c05 (2024-08-26-16:03)
Licensed under GNU GPL v2
For bug reports, read
http://openocd.org/doc/doxygen/bugs.html
jtag
Info : Listening on port 6666 for tcl connections
Info : Listening on port 4444 for telnet connections
Info : Buspirate JTAG Interface ready!

Info : Note: The adapter "buspirate"” doesn't support configurable speed

Info : JTAG tap: ath79.cpu tap/device found: 0x00000001 (mfg: Ox000 (<invalid>), part: 0x0000, ver: 0x0)
Info : [ath79.cpu] Examination succeed

Info : [ath79.cpu] starting gdb server on 3333

Info : Listening on port 3333 for gdb connections

Info : accepting 'telnet' connection on tcp/4444

[> Security Research Labs 16

Appendix — Extracting firmware over JTAG (Part 3) — openOCD config

Atheros ATH79 MIPS SoC. source [find /usr/local/share/openocd/scripts/interface/buspirate.cfg]
tested on AP83 and AP99 reference board buspirate port /dev/ttyUSBO
#

Transport select jtag
source: https://forum.openwrt.org/viewtopic.php?pid=297299#p297299

if { [info exists CHIPNAME] } {
set _CHIPNAME $CHIPNAME
}else {
set _CHIPNAME ath79
}

[1] https://openwrt.org/docs/guide-user/hardware/debrick.ath79.using.jtagtath79cfg

if { [info exists ENDIAN] } {
set _ENDIAN SENDIAN
}else {
set _ENDIAN big
}

if { [info exists CPUTAPID] } {
set _CPUTAPID SCPUTAPID

}else {
set _CPUTAPID 0x00000001

}

jtag_ntrst_assert_width 200
jtag_ntrst_delay 1

reset_config trst_only
jtag newtap S_CHIPNAME cpu -irlen 5 -ircapture 0x1 -irmask 0x1f -expected-id $_CPUTAPID

set _TARGETNAME $_CHIPNAME.cpu
target create $_TARGETNAME mips_m4k -endian $_ENDIAN -chain-position $_TARGETNAME

S_TARGETNAME configure -event reset-init {
disable flash remap
mww 0xbf000004 0x43

}

serial SPI capable flash

flash bank <driver> <base> <size> <chip_width> <bus_width>

set _FLASHNAME $_CHIPNAME.flash

flash bank S_FLASHNAME ath79 0xbf000000 0x01000000 0 0 S_TARGETNAME

Extracting firmware over JTAG (Part 4) — Halt the device before firmware extraction

Step 1 ## Telnet to openocd server
telnet localhost 4444
check the target chip’s state
targets

> targets
TargetName

mips_m4k big ath79.cpu running

Spam the halt command to halt the CPU processor id not available, failed to read cp® PRId register

isa info not available, failed to read cp@® config register: 0
f123|t ta;giz halted in MIPS32 mode due to debug-request, pc: 0x80109254
. . ISA implemented: MIPS32, MIPS16, release 2(AR=1)
Pause until you see two halt implemented and the OsP implenented: yes, rev 2
state iS Steadily halted from utargets” Output ':a;gi: halted in MIPS32 mode due to debug-request, pc: 0x80109254
> hate
> halt
- Sometimes you can only halt the CPU in the beginning of s
> halt
the system boot up > halt
> halt
> halt
> halt

- Half-successful halt will trigger system reboot. Not a > halt

> targets

permanent halt TargetNane Endian TapName

0* ath79.cpu ips_| big ath79.cpu
> targets
TargetName Endian TapName

0* ath79.cpu ips_ big ath79.cpu

=4 Q€ECUrily xeseqarcn Laps

Extracting firmware over JTAG (Part 5) — Dump the firmware

Identify the flash memory location & size [1]

L flash banks

Identify the flash chip device name (optional)

Step 2 flash probe 0 Footnotes [1]

Extract the firmware based on the offset identified in step 1 = Flash banks are pre-defined
dump_image <output filename> 0xbfO00000 0x0100000 in the target chip’s config

> flash banks file (ath79.cfg)
#Of{azﬁh;?égla;h (ath79) at OxbfoeeEEO, size Ox01000000, buswidth 0, chipwidth © = \Without the config, it will
>

Found flash device 'win w25q128fv/jv' (ID 0x001840ef) not work ®

flash 'ath79' found at OxbfeeEEEO

Step 3

> dump_image ac1750v2_firmware.bin 0xbf000000 O6x01000000

No working memory available. Specify -work-area-phys to target.
not enough working area available(requested 128)

No working area available

Falling back to non-bulk read

Verify the image is being dumped

f;tii[) ll Z $ while true; do ls -1 ac1750v2_firmware.bin ;sleep 60; done
-rw-rw-r-- 1 srlabs srlabs 0 Aug 26 16:40 ac1750v2_firmware.bin
-rw-rw-r-- 1 srlabs srlabs 0 Aug 26 16:40 ac1750v2_firmware.bin
-rw-rw-r-- 1 srlabs srlabs 4096 Aug 26 16:42 ac1750v2_firmware.bin

rW-rW-r--

1 srlabs srlabs 4096 Aug 26 16:42 ac1750v2_firmware.bin

[> Security Research Labs 19

Agenda

1. What is JTAG?
2. ldentifying a JTAG interface
3. Identifying JTAG pinout

4. Dumping firmware via JTAG

} 5. Challenges & Future works

[> Security Research Labs

20

The journey of JTAG hacking doesn’t end here yet... Some challenges need more effort to work
around

Obtain chip = Unable to craft openocd config = Manufacturer does not publish all their
specification -> Cannot connect the JTAG interface via chip’s specification
(data sheet) OpenOCD

= Chip’s details are in the datasheet, e.g. bus
width, chip width, memory mapping

Potential workaround

= An automotive brute-force approach to identify chip specification
(See next slide)

[> Security Research Labs

21

The essential components of OpenOCD config files are bruteforceable

Essential config = Bytes order
components - Big-endian vs Little-endian
= CPUTAPID
- Retrievable from IDCODE scan
= |Instruction Register Length
- Common configuration based on chip architecture, e.g.
- 4-bit for simple devices, 5-bit for Cortex-M, 7-bit for ARM cores, etc
= Flash memory offset
- Common values based on flash driver — readily available on OpenOCD page, e.g.
- ath79: 0xbf000000/ 0x10000000/ 0x20000000; mrvigspi: 0x46010000; etc
= Flash memory size
- identifiable via physical inspection on the flash chip (refer to our SPI flash hacking!!)

Hypothetical automation steps

oPopuIate the config QSpawning openocd 9Va|idate config by eExtract firmware with eExtract and search file

files for bruteforce with new config files some means the few potential system from the
(to be researched) legitimate config firmwares

TO =IIEGASS af’Fer = Any essential components forgotten?

implementation & research = Will the bruteforce time be acceptable?

[> Security Research Labs 22

