Hacking IOT devices using SPI flash

HiTB 2024 – Hardware Village



1. What is SPI flash memory?

- 2. Identifying flash memory
- 3. Target selection
- 4. Dumping flash memory
- 5. Modifying filesystems
- 6. Writing filesystem back to chip
- 7. Getting a root shell



# What is SPI flash memory?

| What is it?                       | SPI flash memory, also known as flash memory, has become<br>widely used in the embedded industry and is commonly<br>used for storage and data transfer in portable devices.                                                                                                                                                                                                                          | SoC (System on Chip)                      |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|
| Where's it found?                 | Common devices include phones, tablets, and media players, as well as industrial devices such as security systems and medical products.                                                                                                                                                                                                                                                              | Cortex-M3)                                |  |
| How is it used<br>in IOT devices? | The flash memory is non-volatile, meaning that it retains its stored data when the device is powered down.<br>Typically, a SOC will contain a first-stage bootloader which will invoke a second-stage bootloader (U-boot) stored in the flash memory. Additional filesystems are also stored in flash memory, which normally contain vendor binaries and configuration scripts for device operation. | SPI-Controller SPI-Flash Memory Our focus |  |

1. What is SPI flash memory?

2. Identifying flash memory

3. Target selection

4. Dumping flash memory

5. Modifying filesystems

6. Writing filesystem back to chip

7. Getting a root shell

### Identifying flash memory

|                             |                                                                                                                                    | company richx                                                                                                                                                                                 |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Physical<br>characteristics | Serial Flash Memory is available in many packages. One of the most common packages is SOP8 (see right).                            | W = Winbond<br>Product Family<br>25Q = SpiFlash Serial Flash Memory with<br>Product Number / Density<br>32J = 32M-bit                                                                         |
| Vendor<br>identification    | Look for the logo, common vendors in the IOT space are GigaDevice, Winbond, Puya.                                                  | Supply VoltageV = 2.7V to 3.6VPackage TypeSS = 8-pin SOIC 208-milST = 8-pin VSDA = 8-pin PDIP 300-milZP = WSON8TB = TFBGA 8x6-mm (5x5 ball array)                                             |
| Part numbers                | Vendor names/logos as well as part numbers are typically printed on the top-side.                                                  | Temperature Range         I       =       Industrial (-40°C to +85°C)         Special Options(3,4)         Q       =       Green Package (Lead-free, RoHS of with QE = 1 in Status register-2 |
| Datasheets                  | Using Open Source Intelligence (OSINT) aka<br>Google, we can lookup the part number of<br>the packages to locate their data sheet. | Participando<br>Participando<br>Participando                                                                                                                                                  |
|                             | Top tip: Check out <u>alldatasheet.com</u>                                                                                         | 25Q32JVSIQ                                                                                                                                                                                    |

| W = Winbond       Product Family       25Q = SpiFlash Serial Flash Memory with 4KB sectors, Dual/Quad I/O                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product Family<br>25Q = SpiFlash Serial Flash Memory with 4KB sectors, Dual/Quad I/O                                                                                                                                                                                       |
| Product Family<br>25Q = SpiFlash Serial Flash Memory with 4KB sectors, Dual/Quad I/O                                                                                                                                                                                       |
| 25Q = SpiFlash Serial Flash Memory with 4KB sectors, Dual/Quad I/O                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                            |
| Product Number / Density                                                                                                                                                                                                                                                   |
| 32J = 32M-bit                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                            |
| Supply Voltage                                                                                                                                                                                                                                                             |
| V = 2.7V to 3.6V                                                                                                                                                                                                                                                           |
| Package Type                                                                                                                                                                                                                                                               |
| SS = 8-pin SOIC 208-mil         ST = 8-pin VSOP 208-mil         SF = 16-pin SOIC 300-mil           DA = 8-pin PDIP 300-mil         ZP = WSON8 6x5-mm         XG = XSON 4x4x0.45-mm           TB = TFBGA 8x6-mm (5x5 ball array)         TC = TFBGA 8x6-mm (6x4 ball array) |
| Temperature Range                                                                                                                                                                                                                                                          |
| I = Industrial (-40°C to +85°C)                                                                                                                                                                                                                                            |
| Special Options(34)                                                                                                                                                                                                                                                        |

Green Package (Lead-free, RoHS Compliant, Halogen-free (TBBA), Antimony-Oxide-free Sb<sub>2</sub>O<sub>3</sub>) with QE = 1 in Status register-2



family size (m-bit)



Security Research Labs

### Identifying flash memory – Flash memory datasheets

Flash memory specifications can *often* be found with a quick Google **search for the product part number printed on to the surface of the chip** 



#### Source: https://file.elecfans.com/web1/M00/9E/D4/pIYBAF06m9-AAQD1ABreaXbSNRY789.pdf

1. What is SPI flash memory?

2. Identifying flash memory

3. Target selection

4. Dumping flash memory

5. Modifying filesystems

6. Writing filesystem back to chip

7. Getting a root shell

# **Target Selection**

| Target<br>Selection                                                                                                                                                                                                               | IPcams are a good place to start when getting into<br>IOT hacking as they are very affordable and offer a<br>large attack surface                                                                                                        | blurams Pet Camera 2K, Indoor Camera, Dog Camera, 360° Home Security Camera, WiFi Baby Monitor, Night Vision, Motion Tracking, 2-Way Talk, Cloud&SD, APP Control, Works with         blurams Pet Camera 2K, Indoor Camera, Dog Camera, 360° Home Security Camera, WiFi Baby Monitor, Night Vision, Motion Tracking, 2-Way Talk, Cloud&SD, APP Control, Works with         blurams Pet Camera 2K, Indoor Camera, Dog Camera, 360° Home Security Camera, WiFi Baby Monitor, Night Vision, Motion Tracking, 2-Way Talk, Cloud&SD, APP Control, Works with         blurams Pet Camera 2K, Indoor Camera, Dog Camera, 360° Home Security Camera, WiFi Baby Monitor, Night Vision, Motion Tracking, 2-Way Talk, Cloud&SD, APP Control, Works with         blurams Pet Camera 2K, Indoor Camera, Dog Camera, 360° Home Security Camera, WiFi Baby Monitor, Night Vision, Motion Tracking, 2-Way Talk, Cloud&SD, APP Control, Works with         blurams Pet Camera 2K, Indoor Camera, Dog Camera, 360° Home Security Camera, WiFi Baby Monitor, Night Vision, Motion Tracking, 2-Way Talk, Cloud&SD, APP Control, Works with         blurams Pet Camera 2K, Indoor Camera, Dog Camera, 360° Home Security Camera, WiFi Baby Monitor, Night Vision, Motion Tracking, 2-Way Talk, Cloud&SD, APP Control, Works with         blurams Pet Camera 2K, Indoor Camera, Dog Camera, 360° Home Security Camera, WiFi Baby Monitor, Night Vision, Motion Tracking, 2-Way Talk, Cloud&SD, APP Control, Works with         blurams Pet Camera 2K, Indoor Pet Pathana         blurams Pet Camera 2K, Indoor P                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Common<br>Attack Surface                                                                                                                                                                                                          | <ul> <li>UART serial</li> <li>SPI flash memory</li> </ul>                                                                                                                                                                                | eligible order to UK or Ireland<br>Or fastest delivery <b>Tomorrow, 5 Jul</b><br>Works with Alexa ~<br>Add to basket<br>More buying choices<br>£19.05 (2 used & new offers)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                   | <ul> <li>Network traffic between IPcam and cloud</li> <li>Network traffic between Mobile app and cloud</li> <li>Network traffic between IPcam and mobile app</li> <li>Mobile app decompilation</li> </ul>                                | FCC documents: <u>https://fccid.io/2ASAQ-A31</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                          | Inou 2K WiFi Security Camera Indoor Pet Dog Baby Camera with Al Human/Motion/Sound<br>Detection, 360° Wireless IP Home Security Camera, Smart Tracking, Siren, Night Vision, 2-Way<br>****** 9,097<br>1k+ bought in past month<br>£1948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Before you<br>buy                                                                                                                                                                                                                 | <b>Check for FCC submissions</b> . Vendors selling wireless capable products in the the US are                                                                                                                                           | FREE delivery Sun, 7 Jul on your first<br>eligible order to UK or Ireland<br>Or fastest delivery Tomorrow, 5 Jul<br>O Works with Alexa ~<br>Add to basket                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                   | required to register their products with FCC. These normally include submitting <b>user manuals</b> .                                                                                                                                    | FCC documents: <a href="https://fcc.report/FCC-ID/2AVYF-IPC-TAX2C/">https://fcc.report/FCC-ID/2AVYF-IPC-TAX2C/</a>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| technical specifications and teardown image<br>the device internals. These are very helpful<br>creating a threat model to determine the att<br>surface of the device and whether it is a suit<br>candidate for security research. | <b>technical specifications and teardown images of the device internals</b> . These are very helpful creating a threat model to determine the attack surface of the device and whether it is a suitable candidate for security research. | Ittle elf Smart Camera, Litokam 2K Indoor Security Camera with 360° Motion Tracking, Pet Camera Night Vision, [2024 New] House Cameras for Pet/Nanny, WiFi Camera Two         Ittle elf Smart Camera, Litokam 2K Indoor Security Camera with 360° Motion Tracking, Pet Camera Night Vision, [2024 New] House Cameras for Pet/Nanny, WiFi Camera Two         Ittle elf Smart Camera, Litokam 2K Indoor Security Camera with 360° Motion Tracking, Pet Camera Night Vision, [2024 New] House Cameras for Pet/Nanny, WiFi Camera Two         Ittle elf Smart Camera, Litokam 2K Indoor Security Camera with 360° Motion Tracking, Pet Camera Night Vision, [2024 New] House Cameras for Pet/Nanny, WiFi Camera Two         Ittle elf Smart Camera, Litokam 2K Indoor Security Camera with 360° Motion Tracking, Pet Camera Night Vision, [2024 New] House Cameras for Pet/Nanny, WiFi Camera Two         Ittle elf Smart Camera, Litokam 2K Indoor Security Camera with 360° Motion Tracking, Pet Camera Night Vision, [2024 New] House Cameras for Pet/Nanny, WiFi Camera Two         Ittle elf Smart Camera, Litokam 2K Indoor Security Camera Night Vision, [2024 New] House Cameras for Pet/Nanny, WiFi Camera Two         Ittle elf Smart Camera, Litokam 2K Indoor Security Camera Night Vision, [2024 New] House Cameras for Pet/Nanny, WiFi Camera Night Vision, [2024 New] House Cameras for Pet/Nanny, WiFi Camera Night Vision, [2024 New] House Cameras for Pet/Nanny, WiFi Camera Night Vision, [2024 New] House Cameras for Pet/Nanny, WiFi Camera Night Vision, [2024 New] House Cameras for Pet/Nanny, Vision, [2024 New] Hou |

### Security Research Labs

#### Target Selection – FCC documents



Security Research Labs Source: https://fcc.report/FCC-ID/2AVYF-IPC-TAX2C/5016580

1. What is SPI flash memory?

2. Identifying flash memory

3. Target selection

4. Dumping flash memory

5. Modifying filesystems

6. Writing filesystem back to chip

7. Getting a root shell

### Dumping flash memory – tooling requirements

SPI flash can be read/written from devices with an SPI interface, these range in price and availability. If you are on a budget, you can use existing hardware you have lying around or purchase specialist hardware to increase reliability.



# Dumping flash memory – connecting to SOP8 chip



# **SOP8 Test clip / PCB probes**

#### Pros

Flash memory can be extracted without removing the chip from the board

#### Cons

Reading (worse writing) via the chip can be unreliable as the chip reader may power up the SOC via the VCC rail



# **SOP8 to DIP8 socket**

### Pros

Flash memory can be read/written with high success rate

### Cons

Chip needs to be removed from board with hot air/soldering iron

# Dumping flash memory – attaching the chip to the programmer device

To remove the requirement of desoldering the chip, a wiring harness been soldered to the pads and connect to a SOP8 > DIP8 socket





Disconnect DIP8 socket from wiring harness and place in the Xgeco programmer



Security Research Labs

# Dumping flash memory – Detecting the SOP8 chip in Xgpro

| Launch Xgpro | Using wine, we can run th |
|--------------|---------------------------|
| software     | Windows binary on Linux   |

 an run the
 pentest@hitb-hv-1:~

 on Linux
 pentest@hitb-hv-1:-\$ wine ~/.wine/drive\_c/Xgpro/Xgpro.exe

#### Detect the flash memory chip

- 1. Click "Auto" on the top menu
- 2. Click "Detect" in the Auto Search window
- 3. Select the highlighted Model
- 4. Click the "Select" button





> Security Research Labs

# Dumping flash memory – Reading & saving the contents of the SOP8 flash chip



- 1. What is SPI flash memory?
- 2. Identifying flash memory
- 3. Target selection
- 4. Dumping flash memory
- 5. Modifying filesystems
- 6. Writing filesystem back to chip
- 7. Getting a root shell

## Modifying filesystems – extracting flash contents and modifying files

| Extract<br>contents     | Using the binwalk <sup>[1]</sup> firmware analysis tool we can extract the contents of the flash memory dump.                                                                                                                      | pentest@hitb-hv-1: ~/Workspace/firmware       Q       E       D       ×         pentest@hitb-hv-1: ~       ×       pentest@hitb-hv-1: ~/Workspace/firmware       ×       ~         pentest@hitb-hv-1: ~/Workspace/firmware\$       docker run -itrm -v \$(pwd):/workspace -       ×       ~         pentest@hitb-hv-1: ~/Workspace sheabot/binwalk -e hitb-firmware-dump.BIN       DESCRIPTION       >       >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | <ul><li>binwalk attempts to calve out different<br/>areas of the binary file into filesystem<br/>sections.</li><li>Our focus should be on SquashFS and<br/>Jefferson filesystems to try and locate<br/>interesting files</li></ul> | <pre>188908 0x2E1EC CRC32 polynomial table, little endian<br/>193820 0x2F51C LZO compressed data<br/>196044 0x2FDCC Android bootimg, kernel size: 0 bytes, kernel addr:<br/>0x70657250, ramdisk size: 543519329 bytes, ramdisk addr: 0x6E72656B, product name:<br/>"mem boot start"<br/>262144 0x40000 uImage header, header size: 64 bytes, header CRC: 0x<br/>D303C2CB, created: 2023-11-21 09:58:03, image size: 1681989 bytes, Data Address: 0<br/>x80010000, Entry Point: 0x8040BED0, data CRC: 0x26E5AB90, OS: Linux, CPU: MIPS, im<br/>age type: OS Kernel Image, compression type: lzma, image name: "Linux-3.10.14_isv<br/>p_pike_1.0_"<br/>262208 0x40040 LZMA compressed data, properties: 0x5D, dictionary s<br/>ize: 67108864 bytes, uncompressed size: -1 bytes<br/>2097152 0x200000 Squashfs filesystem, little endian, version 4.0, com<br/>pression:xz, size: 965404 bytes, 213 inodes, blocksize: 65536 bytes, created: 2024<br/>-08-15 11:27:45<br/>3080192 0x2F0000 Squashfs filesystem, little endian, version 4.0, com<br/>pression:xz, size: 4314274 bytes, 77 inodes, blocksize: 65536 bytes, created: 2022<br/>-01-01 00:00:00<br/>7995392 0x7A0000 JFFS2 filesystem, little endian</pre> |
| Modify root<br>password | The shadow file on *nix systems contains<br>local user password hashes. We can<br>change the hash to something we know                                                                                                             | <pre>pentest@hitb-hv-1:-/Workspace/firmware/_hitb-firmware-dump.BIN.extracted\$ tail squ<br/>ashfs-root/etc/shadow<br/>root:\$1\$soidjfoi\$YqVofy88ZPpjWu1nwaQzN1:10933:0:999999:7:::<br/>pentest@hitb-hv-1:-/Workspace/firmware/_hitb-firmware-dump.BIN.extracted\$<br/>\$ openssl passwd -1 -salt [salt] [password]</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Enable Telnet<br>Access | The telnet daemon is installed but<br>commented in the init.d/rcS script. By<br>removing the # we enable the service                                                                                                               | <pre>pentest@hitb-hv-1:~/Workspace/firmware/_hitb-firmware-dump.BIN.extracted\$ grep -r "telnet" squashfs-root grep: squashfs-root/bin/busybox: binary file matches squashfs-root/etc/init.d/rcS:# Start telnet daemon squashfs-root/etc/init.d/rcS:#telnetd &amp; pentest@hitb-hv-1:~/Workspace/firmware/_hitb-firmware-dump.BIN.extracted\$</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

### Modifying filesystems – extracting and creating Squashfs filesystems to inject into flash binary

| Extracting the<br>Squashfs<br>filesystem | The binwalk tool previously extracted<br>the Squashfs filesystems using<br>sasquatch. Let's extract it again using a<br>stand alone binary (unsquash) which<br>we have full control of. | <pre>pentest@httb-hv-1:-/Workspace/firmware/_httb-firmware-dump.BlN.extracted\$ cd modif<br/>ied_firmware/<br/>pentest@httb-hv-1:-/Workspace/firmware/_httb-firmware-dump.BlN.extracted/modified_<br/>firmware\$ unsquashfs.root<br/>squashfs-root/ squashfs-root-0/<br/>pentest@httb-hv-1:-/Workspace/firmware/_httb-firmware-dump.BlN.extracted/modified_<br/>firmware\$ unsquashfs/200000.squashfs<br/>Parallel unsquashfs: Using 4 processors<br/>184 inodes (67 blocks) to write<br/>[====================================</pre> |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          |                                                                                                                                                                                         | \$ unsquash/200000.squashfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Filesystem<br>parameters                 | Blocksize and compression type can be<br>obtained from the previously ran<br>binwalk command.                                                                                           | 2097152 0x200000 Squashfs filesystem, little endian, version 4.0, compression:xz, size: 965404 bytes, 213 inodes, b<br>locksize: 65536 bytes created: 2024-08-15 11:27:45<br>3080192 0x2F0000 Squashfs filesystem, little endian, version 4.0, compression:xz, size: 4314274 bytes, 77 inodes, b<br>locksize: 65536 bytes created: 2022-01-01 00:00:00                                                                                                                                                                                |
| Create<br>filesystem                     | Using the above parameters, we can<br>create a new Squashfs filesystem<br>which closely matches the original.                                                                           | <pre>firmware\$ mksquashfs squashfs-root/ 200000.squashfs-modified comp xz -b 65536 Parallel mksquashfs: Using 4 processors Creating 4.0 filesystem on 200000.squashfs-modified, block size 65536. [====================================</pre>                                                                                                                                                                                                                                                                                        |
|                                          |                                                                                                                                                                                         | \$ mksquashfs squashfs-root/ 200000-modified.squashfs -comp xz -b 655                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Injecting into<br>flash dump             | The modified squashfs partition can be<br>injected into the original flash dump<br>using cat and dd.                                                                                    | <pre>pentest@hitb-hv-1:~/Workspace/firmware\$ cp hitb-firmware-dump.BIN hitb-firmware-dump.BIN.original pentest@hitb-hv-1:~/Workspace/firmware\$ cat _hitb-firmware-dump.BIN.extracted/modified_firmware/200000.squashfs-modified   dd co nv=notrunc of=hitb-firmware-dump.BIN bs=1 seek=\$((0x200000)) 966656+0 records in 966656+0 records out 966656 bytes (967 kB, 944 KiB) copied, 2.30372 s, 420 kB/s</pre>                                                                                                                     |
|                                          |                                                                                                                                                                                         | \$ cat mnt/modified.squashfs   dd conv=notrunc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| > Security Res                           | earch Labs                                                                                                                                                                              | of=hitb-firmware-dump.bin bs=1 seek=\$((0x200000)) 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

65536

- 1. What is SPI flash memory?
- 2. Identifying flash memory
- 3. Target selection
- 4. Dumping flash memory
- 5. Modifying filesystems
- 6. Writing filesystem back to chip
- 7. Getting a root shell

### Writing filesystem back to chip



- 1. Click "LOAD" on the top menu
- Click "Browse" in the File load window
- Locate the dump.bin and click "Open"
- 4. Click "OK"

Aug 26 15:32 Хдрго v12.66 File(E) Select IC(S) Project(P) Device(D) Tools(V) Help(H) Language(L) ΨD. HECK E BLANK m READ RĂM Erase PROG. 🕈 ABOUT 🗄 ₿**\_**®\_1 ADD to Information (No Desirat an error - 🗆 🗙 File load Options Open File load Options \_ × FileName: Z:\home\pentest\Workspace\firmware\hitb-firmware-dump.BIN Browse Browse FileName: 
 2
 CC)

 2
 C2)

 2
 C2)

 2
 C2)

 2
 Din

 3
 DinZer

 4
 DinZer

 5
 DinZer

 6
 DinZer

 7
 DinZer

 8
 Other

 9
 DinZer

 9
 DinZer
 Type Size File Forma -File Format Folder oad mode imp BIN extracted 8,192 KB **BIN** file BINARY
 BINARY
 BINARY
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A Normal BINARY 4 -Normal hitb-firmware-dump.BIN.original 8,192 KB original file C INTEL HEX C INTEL HEX From File Start Addr(Hex): 00000 00000 From File Start Addr(Hex): TO Buffer Strat Addr(HEX): 00000 TO Buffer Strat Addr(HEX): 00000 To Region(Buffer) To Region(Buffer) Oefault Oefault Clear Buffer when loading the file Clear Buffer when loading the file C FLASH C FLASH Clear buffer with default -• Clear buffer with default Cancel OK Cancel File name: hitb-firmware-dump.BIN Aug 26 15:32 💎 🌒 Хдрго v12.66 Select IC(S) Project(P) Device(D) Tools(V) Help(H) Language(L) File(E) 迅 🗃 LOAI 🕈 ABOUT 🗄 READ PROG. Calast IC to take muching (No Desirate second) 5 Chip Program APP Version: 12.66 Device Model: XGecu T56 Chip Program APP Version: 12.66 Device Model: XGecu T56 Chip Program APP Version: 12.66 Device Model: XGecu T56 P25D64H Program Range P25D64H P25D64H Program Range Program Range FLASH STATUS REG FLASH FLASH STATUS REG Q\_\_\_\_ STATUS REG í an sea í na se Beep Sound ON Beep Sound ON Beep Sound ON Use Adapter:SOIC8 <-> DIP8 Use Adapter:SOIC8 <-> DIP8 Use Adapter:SOIC8 <-> DIP8 Pins Detected Passed ID: 0x 85 60 17 ......0H Frase Succeeded ID: 0x 85 60 17 .....OK! me : 0.492 S Data Protect Disable...OK! Programming FLASH ... ata Protect Disable OK gramming FLASH ...Succeeded. Time : 52379ms fying FLASH ...Succeeded. Time : 4284ms amming STATUS REG ...Succeeded. Time : 0ms ng STATUS REG ...Succeeded. Time : 0ms BACK View Adapt View Adapter Program BACK View Adapter Program BACK 71F/18 **ZIF48 ZIF48** 

#### Write the dump to the chip

- 5. Click "PROG" on the top menu
- Click "Program" in the Chip Program window
- 7. Click "BACK" once complete

6

> Security Research Labs

- 1. What is SPI flash memory?
- 2. Identifying flash memory
- 3. Target selection
- 4. Dumping flash memory
- 5. Modifying filesystems
- 6. Writing filesystem back to chip

#### 7. Getting a root shell

### Getting root shell – re-attaching the chip IPcam



Remove DIP8 socket from the Xgeco programmer and connect back to the wiring harness



Security Research Labs

### Getting root shell – telnet if camera no longer broken :/

