Hacking IOT devices using UART

HiTB 2024 – Hardware Village

1. What is UART?

- 2. Identifying UART
- 3. Connecting to UART
- 4. Interactive console via Bus Pirate
- 5. Methods to dump firmware
- 6. Extract hash and crack password from official firmware repository
- 7. U-boot and interactive terminal
- 8. Exercise
- 9. Alternative boot
- 10. Interactive root console

What is UART?

 A universal asynchronous receivertransmitter (UART) is an asynchronous system, that rely on pre-configured baud rates to synchronize the data transmission, with the data being sent one bit at a time through a pair of wires: a transmit (TX) line and a receive (RX) line.

 UART is commonly used for short-range serial communication between microcontrollers, embedded systems, and various peripheral devices, such as displays, keypads, computers, wireless modules, and industrial equipment.

Objective of gaining UART access

UART is one of the most common interfaces available in many devices. By accessing UART, we target to achieve the followings:

		Interactive console
ī	37 2840001	set nort 22 on
ŗ	37.6240001	fuse init (API version 7.12)
ř	37.8040001	usbcore: registered new interface driver usbfs
ř	37.8120001	usbcore: registered new interface driver hub
r T	37.8240001	usbcore: registered new device driver usb
ī .	37.8480001	ehci hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver
ī .	37.856000]	Port Status 1c000004
Ē	37.860000]	ath-ehci ath-ehci.0: ATH EHCI
Ē	37.864000]	ath-ehci ath-ehci.0: new USB bus registered, assigned bus number 1
[37.872000]	ehci_reset Intialize USB CONTROLLER in host mode: 13
[37.880000]	ehci_reset Port Status 1c000000
[37.884000]	ath-ehci ath-ehci.0: irq 3, io mem 0x1b000000
[37.892000]	ehci_reset Intialize USB CONTROLLER in host mode: 13
[37.896000]	ehci_reset Port Status 1c000000
[37.916000]	ath-ehci ath-ehci.0: USB 2.0 started, EHCI 1.00
[37.920000]	usb usb1: configuration #1 chosen from 1 choice
[37.924000]	hub 1-0:1.0: USB hub found
[37.928000]	hub 1-0:1.0: 1 port detected
[37.936000]	Port Status 1c000000
[37.936000]	ath-ehci1 ath-ehci1.1: ATH EHCI
[37.940000]	ath-ehci1 ath-ehci1.1: new USB bus registered, assigned bus number 2
[37.952000]	ehci_reset Intialize USB CONTROLLER in host mode: 13
[37.956000]	ehci_reset Port Status 1c000000
[37.960000]	ath-ehci1 ath-ehci1.1: irq 3, io mem 0x1b400000
[37.968000]	ehci_reset Intialize USB CONTROLLER in host mode: 13
	37.976000]	ehci_reset Port Status 1c000000

Dumping firmware

000000f0:	0000 0000000 0000000 0000000
ap135> md	-
00000000:	20a03ccd 545fc332 aba03ccd 545fc332 .<.T2
00000010:	aba03ccd 545fc332 aba03ccd 545fc332
00000020:	001ad042 335a0e78 037ad821 8f7a0000 .Z.x.z.!.z
00000030:	8f7b0004 001a9182 409a1000 001bd902 .{0
00000040:	accd 545fc332 aba03ccd 545fc332
00000050:	aba03ccd 545fc332 aba03ccd 542<.T2<.T2
00000060:	00000000 0000000 0000000 00000000
00000070:	00000000 000000000000 00000000
00000080:	aba03ccd 545fc332 aba03ccd 545fc332<
00000090:	aba03ccd 545fc332 aba03ccd 545fc332<.T2
000000a0:	00000000 0000000 0000000 000
000000b0:	00000000 0000000 0000000 00000000
000000c0:	aba03ccd 5452 aba03ccd 545fc332<.T2<.T2
000000d0:	aba03ccd 545fc332 aba03ccd 545fc3322<.T2
000000e0:	00000000 0000000 0000000 00000000
000000f0:	00000000 00000000 000000000000

1. What is UART?

2. Identifying UART

- 3. Connecting to UART
- 4. Interactive console via Bus Pirate
- 5. Methods to dump firmware
- 6. Extract hash and crack password from official firmware repository
- 7. U-boot and interactive terminal
- 8. Exercise
- 9. Alternative boot
- 10. Interactive root console

Identifying UART – identify pin out [1/2]

Potential UART Pin out	0000
Tools required	Crocodile clip wire (x4)Multimeter
Identify GND port	 Ensure the device is powered off Use "Continuity Test" Mode on Multimeter Touch one probe of multimeter onto an arbitrary metal on the board, and test the GND port by touching the other end of multimeter The GND pin can be identified if a continuous "beep" sound from multimeter is noted

Identifying UART – identify pin out [2/2]

Identify VCC port	 Ensure the device is powered on Use "DC Voltage Mode", with 20V Max on Multimeter Touch black probe onto GND port, and test the VCC port by touching the red probe The VCC port can be found if the multimeter measures a constant voltage (usually 3.3V or 5V)
Identify TX port	 Ensure the device is powered on Use "DC Voltage Mode", with 20V Max on Multimeter Touch black probe onto GND port, and test the TX port by touching the red probe The TX port can be found if the multimeter measures a fluctuate voltage (around 1.8V - 2.1V) and then returning to VCC voltage (due to debugging data sent over via TX port)
Identify RX port	 Ensure the device is powered on Use "DC Voltage Mode", with 20V Max on Multimeter Touch black probe onto GND port, and test the TX port by touching the red probe The TX port can be found if the multimeter measures a small fluctuate voltage

Identifying UART – verify baud rate by Logic Analyzer [1/4]

What is baud rate?	 Baud rate is the measure of the speed at which data is transmitted over a communication channel, typically expressed in bits per second (bps) It determines the number of signal or symbol changes that occur per second, allowing devices to effectively communicate with each other by synchronizing the rate at which data is sent and received. 	
Tools required	 Logic analyzer Machine with PulseView and corresponding driver installed Connecting wires 	
Setup	 Connect TX of device to any channel on the logic analyzer Connect GND of device to GND on Logic Analyzer Install PulseView (and all dependencies) on your machine Connect Logic Analyzer and machine 	

Identifying UART – verify baud rate by Logic Analyzer [2/4]

Procedures 1. Open up PulseView, and ensure the logic analyzer is connected and selected

- 2. Choose 500M samples and 24MHz[^] initially
- 3. Click run, and turn on the device
- 4. There should be a signal appearing on your selected channel
- 5. Zoom into the smallest trough, and measure the time interval of the trough. This is used for rough estimation of signal frequency
- 6. Approximate value to the closest common Baud rate (e.g. 115200 in our demo)

	Capation 1 Dula Alian		,	Session 1 - PulseView
	un X			Session 1
00	Session 1			🖕 🔄 🗉 🛐 🖣 signak FXZ LA (BCh) 🕌 🚀 500 G samples 🕒 24 MHz
E	🖹 _ 🔄 _ 🕞 🦳 👎 sigrok FX2 LA (8ch) 🕌 💥 🥕 500 G samples 📀 24 MHz 📀 🦛			146948987 μs
	+6946500 µs +6947500 µs +6948000 µs +6948500 µs	+6949500 μs +6950000 μs +6950500 μs		
	+ + + + + + + + + + + + + + + + + + +			
D1				
D3				
D4				
DS				1 χ ο χ
05				
D6				

^ Be reminded to check the maximum supported frequency on your logic analyzer and set to highest available

Identifying UART – verify baud rate by Logic Analyzer [3/4]

Procedures 7. To read the decoded content from TX of device, select "add protocol header", and choose UART

- 8. Select the channel as TX, with Baud rate set to the approximated value, and Data format to ASCII
- 9. Now you are able to view the decoded content from TX

10. If the content displayed in garbled, try with different Data bit, Parity and Stop bit

Name UART		Session 1 - PulseView
Color		
UART	ø	+6950000 µs +6950500 µs
RX (UART receive line)	- 📀	
TX (UART transmit line)	D5 📀	
Baud rate	115200 🗘	f I I a s h h s i z ke V 1 6 M B
Data bits	8 😂	
Parity	none 📀	
Stop bits	1.0	
Bit order	lsb-first 📀	
Data format	ascii 📀	

Identifying UART – verify baud rate by Logic Analyzer [4/4]

> Security Research Labs

000000045064 6F 6E 65 0D 0A 3A 20 63 66 67 31 20 30 78 38 done..: cfg1 0x8 000000046030 30 63 30 30 30 30 20 63 66 67 32 20 30 78 37 00c0000 cfg2 0x7 000000047032 31 34 0D 0A 65 74 68 31 3A 20 62 61 3A 62 65 214..eth1: ba:be

- 1. What is UART?
- 2. Identifying UART

3. Connecting to UART

- 4. Interactive console via Bus Pirate
- 5. Methods to dump firmware
- 6. Extract hash and crack password from official firmware repository
- 7. U-boot and interactive terminal
- 8. Exercise
- 9. Alternative boot
- 10. Interactive root console

Connecting to UART

Connecting to UART via Bus Pirate

Setup	 Connect TX of device to MISO (Master In Slave Out) of Bus Pirate Connect RX of device to MOSI of Bus Pirate Connect GND of device to GND of Bus Pirate Connect Bus Pirate to your machine 		
Procedures	1. On your machine, open console, and list out candidates of USB ports: Linux: ls /dev/usb* MacOS: ls /dev/tty.usb*		
	 2. To open serial connection to bus pirate, input either of the following commands: screen <bus-pirate-serial-port> 115200</bus-pirate-serial-port> picocom -b 115200 <bus-pirate-serial-port></bus-pirate-serial-port> 	TX RX	
	 Input m, then select 3 (UART), and configure with the baud rate, data bit, parity bit, stop bit you found in previous session Select 2 for the power Input (1)Transparent UART bridge and interact with UART on the device 	GN	

Bus Pirate

You got the shell!

37.284000] set port 22 on 37.624000] fuse init (API version 7.12) 37.804000] usbcore: registered new interface driver usbfs 37.812000] usbcore: registered new interface driver hub 37.824000] usbcore: registered new device driver usb 37.848000] ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver 37.856000] Port Status 1c000004 37.860000] ath-ehci ath-ehci.0: ATH EHCI 37.864000] ath-ehci ath-ehci.0: new USB bus registered, assigned bus number 1 37.872000] ehci_reset Intialize USB CONTROLLER in host mode: 13 37.880000] ehci reset Port Status 1c000000 37.884000] ath-ehci ath-ehci.0: irg 3, io mem 0x1b000000 37.892000] ehci_reset Intialize USB CONTROLLER in host mode: 13 37.896000] ehci_reset Port Status 1c000000 37.916000] ath-ehci ath-ehci.0: USB 2.0 started, EHCI 1.00 37.920000] usb usb1: configuration #1 chosen from 1 choice 37.924000] hub 1-0:1.0: USB hub found 37.928000] hub 1-0:1.0: 1 port detected 37.936000] Port Status 1c000000 37.936000] ath-ehci1 ath-ehci1.1: ATH EHCI 37.940000] ath-ehci1 ath-ehci1.1: new USB bus registered, assigned bus number 2 37.952000] ehci_reset Intialize USB CONTROLLER in host mode: 13 37.956000] ehci_reset Port Status 1c000000 37.960000] ath-ehci1 ath-ehci1.1: irg 3, io mem 0x1b400000 37.968000] ehci_reset Intialize USB CONTROLLER in host mode: 13 37.976000] ehci_reset Port Status 1c000000 37.992000] ath-ehci1 ath-ehci1.1: USB 2.0 started, EHCI 1.00 37.996000] usb usb2: configuration #1 chosen from 1 choice 38.004000] hub 2-0:1.0: USB hub found 38.004000] hub 2-0:1.0: 1 port detected 38.204000] SCSI subsystem initialized 38.468000] Initializing USB Mass Storage driver... 38.472000] usbcore: registered new interface driver usb-storage 38.476000] USB Mass Storage support registered. 38.556000] kcg 333 :GPL NetUSB up! 38.772000] kc 90 : run_telnetDBGDServer start 38.776000] kc 227 : init_DebugD end 38.780000] INF017E0: NetUSB 1.02.65.5, 0002061F : Apr 21 2015 15:30:36 38.784000] INF017E2: 7437: Archer C7 v2 :Archer C7 v2 38.792000] INF017E3: AUTH ISOC 38.796000] INF017E4: filterAudio 38.796000] usbcore: registered new interface driver KC NetUSB General Driver

- 1. What is UART?
- 2. Identifying UART
- 3. Connecting to UART

4. Interactive console via Bus Pirate

- 5. Methods to dump firmware
- 6. Extract hash and crack password from official firmware repository
- 7. U-boot and interactive terminal
- 8. Exercise
- 9. Alternative boot
- 10. Interactive root console

Interactive console via Bus Pirate

 You may now find yourself on the login console after the boot is completed, but how can one get the credentials to authenticate? Authenticate with the obtained credentials default password (root:root, admin:admin, etc) web UI admin password decrypted password from /etc/shadow from firmware analysis

Archer C7 mips #1 Mon Mar 5 14:00:27 CST 2018 (none) Archer C7 login: Archer C7 mips #1 Mon Mar 5 14:00:27 CST 2018 (none) Archer C7 login: Archer C7 mips #1 Mon Mar 5 14:00:27 CST 2018 (none) Archer C7 login: Archer C7 mips #1 Mon Mar 5 14:00:27 CST 2018 (none) Archer C7 login:

- 1. What is UART?
- 2. Identifying UART
- 3. Connecting to UART
- 4. Interactive console via Bus Pirate

5. Methods to dump firmware

- 6. Extract hash and crack password from official firmware repository
- 7. U-boot and interactive terminal
- 8. Exercise
- 9. Alternative boot
- 10. Interactive root console

Methods to dump firmware

UART (U-boot)

Check our other workbenches for walkthrough on jTAG and SPI flash!

Online repository from vendor

TL-WR902AC(US)_V3.6_0.9.1 Bu	Download	
Published Date: 2022-10-26	Language: Multi-language	File Size: 7.96 MB
Modifications and Bug Fixes:		

Optimized total performance.

- 1. What is UART?
- 2. Identifying UART
- 3. Connecting to UART
- 4. Interactive console via Bus Pirate
- 5. Methods to dump firmware
- 6. Extract hash and crack password from official firmware repository
- 7. U-boot and interactive terminal
- 8. Exercise
- 9. Alternative boot
- 10. Interactive root console

Extract hash and crack password from official firmware repository [1/2]

es

- 1. Download the firmware from vendor's website
- 2. Extract the filesystem from the firmware binary with binwalk binwalk -e <firmware binary path>

srlabs@srlabs:~/Workspace/device-testing/tp-link-ac1750v2/analysis/Archer C7(EU)_V2_180305\$ binwalk -e ArcherC7v2_en_eu_3_15_3_up_boot\(180305 \).bin

DECIMAL HEXADECIMAL DESCRIPTION

0 0x0 TP-Link firmware header, firmware version: 1.-15188.3, image version: "", product ID: 0x0, product version: -956 301310, kernel load address: 0x0, kernel entry point: 0x80002000, kernel offset: 16384512, kernel length: 512, rootfs offset: 855873, rootfs l ength: 1048576, bootloader offset: 15204352, bootloader length: 0

- 71520 0x11760 Certificate in DER format (x509 v3), header length: 4, sequence length: 64
- 98560 0x18100 U-Boot version string, "U-Boot 1.1.4 (Mar 5 2018 13:57:29)"
- 98736 0x181B0 CRC32 polynomial table, big endian

131584 0x20200 TP-Link firmware header, firmware version: 0.0.3, image version: "", product ID: 0x0, product version: -95630131 0, kernel load address: 0x0, kernel entry point: 0x80002000, kernel offset: 16252928, kernel length: 512, rootfs offset: 855873, rootfs length : 1048576, bootloader offset: 15204352, bootloader length: 0

132096 0x20400 LZMA compressed data, properties: 0x5D, dictionary size: 33554432 bytes, uncompressed size: 2451644 bytes

WARNING: Symlink points outside of the extraction directory: /home/srlabs/Workspace/device-testing/tp-link-ac1750v2/analysis/Archer C7(EU)_V2_ 180305/_ArcherC7v2_en_eu_3_15_3_up_boot(180305).bin.extracted/squashfs-root/etc/passwd -> /tmp/passwd; changing link target to /dev/null for s ecurity purposes.

WARNING: Symlink points outside of the extraction directory: /home/srlabs/Workspace/device-testing/tp-link-ac1750v2/analysis/Archer C7(EU)_V2_ 180305/_ArcherC7v2_en_eu_3_15_3_up_boot(180305).bin.extracted/squashfs-root/etc/ppp/conn-script -> /tmp/conn-script; changing link target to / dev/null for security purposes.

WARNING: Symlink points outside of the extraction directory: /home/srlabs/Workspace/device-testing/tp-link-ac1750v2/analysis/Archer C7(EU)_V2_ 180305/_ArcherC7v2_en_eu_3_15_3_up_boot(180305).bin.extracted/squashfs-root/bin/iptables-xml -> /lzm/qca_dual/rootfs.build.2.6.31_ap135v2_wifi /sbin/iptables-multi; changing link target to /dev/null for security purposes.

1180160 0x120200 Squashfs filesystem, little endian, version 4.0, compression:lzma, size: 9878520 bytes, 789 inodes, blocksize: 1 31072 bytes, created: 2018-03-05 06:16:10

srlabs@srlabs:~/Workspace/device-testing/tp-link-ac1750v2/analysis/Archer C7(EU)_V2_180305\$

Extract hash and crack password from official firmware repository [2/2]

Procedures

- 3. Extract the hash from /etc/shadow
- 4. Search the hash from online, or crack it with your hashcat

<pre>srlabs@srlabs:~/workspace/device-testing/tp-link-ac1/50v2/analysis/Archer C7(EU)_V2_180305\$ ls -l _ArcherC/v2_en_eu_3_15_3_up_boot\(180305\).b in.extracted/squashfs-root/ total 52 down we were a calche calche took two of totat bloc</pre>	Googling the hash[1]
drwxr-xr-x 2 srlabs srlabs 4096 Aug 2/ 12:44 bun	
Grwxr-xr-x 3 Srlabs Srlabs 4096 Mar 5 2018 Gev	
drwxr-xr-x 9 Srlabs Srlabs 4096 Aug 27 12:44 etc	I had to useforce to get it to work on my VM.
urwir-xi-x 5 Silab Silab Silab 4090 Mai 5 2016 tib	Attack type, bruteforce=3 : -a 3
driwsryry 2 sclabs sitads 11 Adg 27 12:44 chicket -> beir/busybox	Cat the service ble for the mask attack we weing just lever acce
driwr yr yr 2 srlabs srlabs 4006 Mar 5 2018 proc	Set the variable for the mask attack, we using just lower case
driwr yr y 2 Srlabs Srlabs 4006 Mar 5 2018 poet	letters: -1 ?l
druxr-xr-x 2 srlabs srlabs 4096 Mar 5 2018 sbin	md5 crvpt \$1\$: -m 500
drwxr-xr-x 2 srlabs srlabs 4096 Mar 5 2018 svs	hash files hash test
drwxr-xr-x 2 srlabs srlabs 4096 Mar 5 2018 tmp	nash me: nash.txt
drwxr-xr-x 4 srlabs srlabs 4096 Mar 5 2018 usr	mask to use (know the password uses admin): ?1?1?1?1admin
drwxr-xr-x 3 srlabs srlabs 4096 Mar 5 2018 var	
drwxr-xr-x 10 srlabs srlabs 4096 Mar 5 2018 web	
<pre>srlabs@srlabs:~/Workspace/device-testing/tp-link-ac1750v2/analysis/Archer C7(EU)_V2_180305\$ cat _ArcherC7v2_en_eu_3_15_3_up_boot\(180305\).bin</pre>	\$1\$GTN.gpri\$DISyKvZKMR9A9UJ9e9wR3/:sohoadmin
.extracted/squashfs-root/etc/shadow	
root:\$1\$GTN.gpri\$DlSyKvZKMR9A9Uj9e9wR3/:15502:0:99999:7:::	
srlabs@srlabs:~/Workspace/device-testing/tp-link-ac1750v2/analysis/Archer_C7(EU)_V2_180305\$	[1] https://blog.xynos.co.uk/2020/03/hashcat-fun.html

- 1. What is UART?
- 2. Identifying UART
- 3. Connecting to UART
- 4. Interactive console via Bus Pirate
- 5. Methods to dump firmware
- 6. Extract hash and crack password from official firmware repository
- 7. U-boot and interactive terminal
- 8. Exercise
- 9. Alternative boot
- 10. Interactive root console

What is U-Boot

Description	 Official name: Das U-Boot (the Universal Boot Loader) Architectures supported: M6800, ARM, Blackfin, MicroBlaze, IBM S360, My66, MOS 6502, ARM64, MIPS, Nios, SuperH, PPC, RISC-V, x86 GitHub repository: https://github.com/u-boot/u-boot
Functionality	 First-stage and second-stage bootloader Intended start-up flow for board Stores important configuration parameters (e.g. IP address of TFTP server)
Information retrievable	 Firmware, which could contain: Passwords and Hashes Usernames Sensitive Public-private key pairs IP addresses pre-configured for communication

U-boot via Bus Pirate

Procedures	 [For TP-Link devices] repetitively type "tpl" and enter in the beginning of boot -> dump firmware [For other devices] check for documentations on u-boot
Common commands available	<pre>autoload autostart baudrate bootargs version - print monitor ver ap135> printenv bootcmd bootargsconsole=ttyS0,115200 root=31:02 rootfstype=jffs2 init=/sbin/init mtdparts=ath-nor0:256k(u-boot),64k(u-b bootdelay bootdelay] bootdelay bootdelay=1 bootfile baudrate=115200 ethaddr serverip=192.1100 ipaddr lu=tftp 0x80060000 s{dir}u-boot.bin&&erase 0x9f0000000 +\$filesize&&cp.b \$fileaddr 0x9f000000 \$filesize loadaddr lk=tftp 0x80060000 \${dir}u-boot.bin&&erase 0x9f000000 +\$filesize&&cp.b \$fileaddr 0x9f000000 \$filesize serverip stdin=serial silent stder=serial ethact=eth0</pre>

- 1. What is UART?
- 2. Identifying UART
- 3. Connecting to UART
- 4. Interactive console via Bus Pirate
- 5. Methods to dump firmware
- 6. Extract hash and crack password from official firmware repository
- 7. U-boot and interactive terminal

8. Exercise

- 9. Alternative boot
- 10. Interactive root console

Exercise – Dump root credentials from U-boot

Hints	Here are a few keywords that may spark your thoughts:
	 md (memory display)
	 cp (copy)
	binwalk

000000f0:	0000 0000000 0000000 0000000
ap135> md	-
00000000:	20a03ccd 545fc332 aba03ccd 545fc332 .<.T2<.T2
00000010:	aba03ccd 545fc332 aba03ccd 545fc332<.T2<.T2
00000020:	001ad042 335a0e78 037ad821 8f7a0000 .Z.x.z.!.z
00000030:	8f7b0004 001a9182 409a1000 001bd902 .{@
00000040:	accd 545fc332 aba03ccd 545fc332<.T2<.T2
00000050:	aba03ccd 545fc332 aba03ccd 542<.T2<.T2
00000060:	00000000 0000000 0000000 0000000
00000070:	00000000 00000000000 0000000
00000080:	aba03ccd 545fc332 aba03ccd 545fc332<
00000090:	aba03ccd 545fc332 aba03ccd 545fc332<.T2<.T2
000000a0:	00000000 0000000 0000000 000
000000b0:	00000000 0000000 0000000 0000000
000000c0:	aba03ccd 5452 aba03ccd 545fc332<.T2<.T2
000000d0:	aba03ccd 545fc332 aba03ccd 545fc3322<.T2
000000e0:	00000000 0000000 0000000 0000000
00000f0:	0000000 0000000 0000000000

- 1. What is UART?
- 2. Identifying UART
- 3. Connecting to UART
- 4. Interactive console via Bus Pirate
- 5. Methods to dump firmware
- 6. Extract hash and crack password from official firmware repository
- 7. U-boot and interactive terminal
- 8. Exercise

9. Alternative boot

10. Interactive root console

Alternative boot if all these failed

USB live boot

37.928000]	hub 1-0:1.0: 1 port detected
37.936000]	Port Status 1c000000
37.936000]	ath-ehci1 ath-ehci1.1: ATH EHCI
37.940000]	ath-ehci1 ath-ehci1.1: new USB bus registered,
37.952000]	ehci_reset Intialize USB CONTROLLER in host mod
37.956000]	ehci_reset Port Status 1c000000
37.960000]	ath-ehci1 ath-ehci1.1: irq 3, io mem 0x1b400000
37.968000]	ehci_reset Intialize USB CONTROLLER in host mod
37.976000]	ehci_reset Port Status 1c000000
37.992000]	ath-ehci1 ath-ehci1.1: USB 2.0 started, EHCI 1.
37.996000]	usb usb2: configuration #1 chosen from 1 choice
38.004000]	hub 2-0:1.0: USB hub found
38.004000]	hub 2-0:1.0: 1 port detected
38.204000]	SCSI subsystem initialized
38.468000]	Initializing USB Mass Storage driver
38.472000]	usbcore: registered new interface driver usb-st
38.476000]	USB Mass Storage support registered.
38.556000]	kcg 333 :GPL NetUSB up!
38.772000]	<pre>kc 90 : run_telnetDBGDServer start</pre>
38.776000]	kc 227 : init_DebugD end
38.780000]	INF017E0: NetUSB 1.02.65.5, 0002061F : Apr 21 2
38.784000]	INF017E2: 7437: Archer C7 v2 :Archer C7 v2
38.792000]	INF017E3: AUTH ISOC
38.7960001	INEO17E4: filterAudio

TFTP boot

ap135>
ap135> help
? - alias for 'help'
bootm – boot application image from memory
cp - memory copy
crc32 - checksum calculation
erase - erase FLASH memory
flinfo – print FLASH meinformation
go - start application at address 'addr'
help - print online help
 memory modify (auto-incrementing)
mw – memory write (fill)
ntenv- print environment variablesaddress)
progmac – Set ethernet MAC addresses
protect - enable sable FLASH write protection
reset - Perform RESET of the CPU
<u>setenv –</u> set environment variables
tftpboot- bimage via network using TFTP protocol
version - print monitor version

- 1. What is UART?
- 2. Identifying UART
- 3. Connecting to UART
- 4. Interactive console via Bus Pirate
- 5. Methods to dump firmware
- 6. Extract hash and crack password from official firmware repository
- 7. U-boot and interactive terminal
- 8. Exercise
- 9. Alternative boot

10. Interactive root console

Interactive root console

Procedures	1. Authenticate with the obtained credentials
What's next?	 Thorough enumeration on filesystem, and look for sensitive information Inspect services installed (e.g. available services on busybox) Dynamic analysis (e.g. running processes, interaction with other devices, communication with external IPs)